佳木斯湛栽影视文化发展公司

主頁(yè) > 知識(shí)庫(kù) > sklearn中的交叉驗(yàn)證的實(shí)現(xiàn)(Cross-Validation)

sklearn中的交叉驗(yàn)證的實(shí)現(xiàn)(Cross-Validation)

熱門(mén)標(biāo)簽:百度AI接口 客戶服務(wù) 呼叫中心市場(chǎng)需求 Win7旗艦版 電話運(yùn)營(yíng)中心 硅谷的囚徒呼叫中心 企業(yè)做大做強(qiáng) 語(yǔ)音系統(tǒng)

sklearn是利用python進(jìn)行機(jī)器學(xué)習(xí)中一個(gè)非常全面和好用的第三方庫(kù),用過(guò)的都說(shuō)好。今天主要記錄一下sklearn中關(guān)于交叉驗(yàn)證的各種用法,主要是對(duì)sklearn官方文檔 Cross-validation: evaluating estimator performance進(jìn)行講解,英文水平好的建議讀官方文檔,里面的知識(shí)點(diǎn)很詳細(xì)。

先導(dǎo)入需要的庫(kù)及數(shù)據(jù)集

In [1]: import numpy as np

In [2]: from sklearn.model_selection import train_test_split

In [3]: from sklearn.datasets import load_iris

In [4]: from sklearn import svm

In [5]: iris = load_iris()

In [6]: iris.data.shape, iris.target.shape
Out[6]: ((150, 4), (150,))

1.train_test_split

對(duì)數(shù)據(jù)集進(jìn)行快速打亂(分為訓(xùn)練集和測(cè)試集)

這里相當(dāng)于對(duì)數(shù)據(jù)集進(jìn)行了shuffle后按照給定的test_size 進(jìn)行數(shù)據(jù)集劃分。

In [7]: X_train, X_test, y_train, y_test = train_test_split(
  ...:     iris.data, iris.target, test_size=.4, random_state=0)
  #這里是按照6:4對(duì)訓(xùn)練集測(cè)試集進(jìn)行劃分

In [8]: X_train.shape, y_train.shape
Out[8]: ((90, 4), (90,))

In [9]: X_test.shape, y_test.shape
Out[9]: ((60, 4), (60,))

In [10]: iris.data[:5]
Out[10]: 
array([[ 5.1, 3.5, 1.4, 0.2],
    [ 4.9, 3. , 1.4, 0.2],
    [ 4.7, 3.2, 1.3, 0.2],
    [ 4.6, 3.1, 1.5, 0.2],
    [ 5. , 3.6, 1.4, 0.2]])

In [11]: X_train[:5]
Out[11]: 
array([[ 6. , 3.4, 4.5, 1.6],
    [ 4.8, 3.1, 1.6, 0.2],
    [ 5.8, 2.7, 5.1, 1.9],
    [ 5.6, 2.7, 4.2, 1.3],
    [ 5.6, 2.9, 3.6, 1.3]])

In [12]: clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

In [13]: clf.score(X_test, y_test)
Out[13]: 0.96666666666666667

2.cross_val_score

對(duì)數(shù)據(jù)集進(jìn)行指定次數(shù)的交叉驗(yàn)證并為每次驗(yàn)證效果評(píng)測(cè)

其中,score 默認(rèn)是以 scoring='f1_macro'進(jìn)行評(píng)測(cè)的,余外針對(duì)分類(lèi)或回歸還有:


這需要from sklearn import metrics ,通過(guò)在cross_val_score 指定參數(shù)來(lái)設(shè)定評(píng)測(cè)標(biāo)準(zhǔn);
當(dāng)cv 指定為int 類(lèi)型時(shí),默認(rèn)使用KFoldStratifiedKFold 進(jìn)行數(shù)據(jù)集打亂,下面會(huì)對(duì)KFoldStratifiedKFold 進(jìn)行介紹。

In [15]: from sklearn.model_selection import cross_val_score

In [16]: clf = svm.SVC(kernel='linear', C=1)

In [17]: scores = cross_val_score(clf, iris.data, iris.target, cv=5)

In [18]: scores
Out[18]: array([ 0.96666667, 1.    , 0.96666667, 0.96666667, 1.    ])

In [19]: scores.mean()
Out[19]: 0.98000000000000009

除使用默認(rèn)交叉驗(yàn)證方式外,可以對(duì)交叉驗(yàn)證方式進(jìn)行指定,如驗(yàn)證次數(shù),訓(xùn)練集測(cè)試集劃分比例等

In [20]: from sklearn.model_selection import ShuffleSplit

In [21]: n_samples = iris.data.shape[0]

In [22]: cv = ShuffleSplit(n_splits=3, test_size=.3, random_state=0)

In [23]: cross_val_score(clf, iris.data, iris.target, cv=cv)
Out[23]: array([ 0.97777778, 0.97777778, 1.    ])

cross_val_score 中同樣可使用pipeline 進(jìn)行流水線操作

In [24]: from sklearn import preprocessing

In [25]: from sklearn.pipeline import make_pipeline

In [26]: clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))

In [27]: cross_val_score(clf, iris.data, iris.target, cv=cv)
Out[27]: array([ 0.97777778, 0.93333333, 0.95555556])

3.cross_val_predict

cross_val_predictcross_val_score 很相像,不過(guò)不同于返回的是評(píng)測(cè)效果,cross_val_predict 返回的是estimator 的分類(lèi)結(jié)果(或回歸值),這個(gè)對(duì)于后期模型的改善很重要,可以通過(guò)該預(yù)測(cè)輸出對(duì)比實(shí)際目標(biāo)值,準(zhǔn)確定位到預(yù)測(cè)出錯(cuò)的地方,為我們參數(shù)優(yōu)化及問(wèn)題排查十分的重要。

In [28]: from sklearn.model_selection import cross_val_predict

In [29]: from sklearn import metrics

In [30]: predicted = cross_val_predict(clf, iris.data, iris.target, cv=10)

In [31]: predicted
Out[31]: 
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [32]: metrics.accuracy_score(iris.target, predicted)
Out[32]: 0.96666666666666667

4.KFold

K折交叉驗(yàn)證,這是將數(shù)據(jù)集分成K份的官方給定方案,所謂K折就是將數(shù)據(jù)集通過(guò)K次分割,使得所有數(shù)據(jù)既在訓(xùn)練集出現(xiàn)過(guò),又在測(cè)試集出現(xiàn)過(guò),當(dāng)然,每次分割中不會(huì)有重疊。相當(dāng)于無(wú)放回抽樣。

In [33]: from sklearn.model_selection import KFold

In [34]: X = ['a','b','c','d']

In [35]: kf = KFold(n_splits=2)

In [36]: for train, test in kf.split(X):
  ...:   print train, test
  ...:   print np.array(X)[train], np.array(X)[test]
  ...:   print '\n'
  ...:   
[2 3] [0 1]
['c' 'd'] ['a' 'b']


[0 1] [2 3]
['a' 'b'] ['c' 'd']

5.LeaveOneOut

LeaveOneOut 其實(shí)就是KFold 的一個(gè)特例,因?yàn)槭褂么螖?shù)比較多,因此獨(dú)立的定義出來(lái),完全可以通過(guò)KFold 實(shí)現(xiàn)。

In [37]: from sklearn.model_selection import LeaveOneOut

In [38]: X = [1,2,3,4]

In [39]: loo = LeaveOneOut()

In [41]: for train, test in loo.split(X):
  ...:   print train, test
  ...:   
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]


#使用KFold實(shí)現(xiàn)LeaveOneOtut
In [42]: kf = KFold(n_splits=len(X))

In [43]: for train, test in kf.split(X):
  ...:   print train, test
  ...:   
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

6.LeavePOut

這個(gè)也是KFold 的一個(gè)特例,用KFold 實(shí)現(xiàn)起來(lái)稍麻煩些,跟LeaveOneOut 也很像。

In [44]: from sklearn.model_selection import LeavePOut

In [45]: X = np.ones(4)

In [46]: lpo = LeavePOut(p=2)

In [47]: for train, test in lpo.split(X):
  ...:   print train, test
  ...:   
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]

7.ShuffleSplit

ShuffleSplit 咋一看用法跟LeavePOut 很像,其實(shí)兩者完全不一樣,LeavePOut 是使得數(shù)據(jù)集經(jīng)過(guò)數(shù)次分割后,所有的測(cè)試集出現(xiàn)的元素的集合即是完整的數(shù)據(jù)集,即無(wú)放回的抽樣,而ShuffleSplit 則是有放回的抽樣,只能說(shuō)經(jīng)過(guò)一個(gè)足夠大的抽樣次數(shù)后,保證測(cè)試集出現(xiàn)了完成的數(shù)據(jù)集的倍數(shù)。

In [48]: from sklearn.model_selection import ShuffleSplit

In [49]: X = np.arange(5)

In [50]: ss = ShuffleSplit(n_splits=3, test_size=.25, random_state=0)

In [51]: for train_index, test_index in ss.split(X):
  ...:   print train_index, test_index
  ...:   
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

8.StratifiedKFold

這個(gè)就比較好玩了,通過(guò)指定分組,對(duì)測(cè)試集進(jìn)行無(wú)放回抽樣。

In [52]: from sklearn.model_selection import StratifiedKFold

In [53]: X = np.ones(10)

In [54]: y = [0,0,0,0,1,1,1,1,1,1]

In [55]: skf = StratifiedKFold(n_splits=3)

In [56]: for train, test in skf.split(X,y):
  ...:   print train, test
  ...:   
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]

9.GroupKFold

這個(gè)跟StratifiedKFold 比較像,不過(guò)測(cè)試集是按照一定分組進(jìn)行打亂的,即先分堆,然后把這些堆打亂,每個(gè)堆里的順序還是固定不變的。

In [57]: from sklearn.model_selection import GroupKFold

In [58]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]

In [59]: y = ['a','b','b','b','c','c','c','d','d','d']

In [60]: groups = [1,1,1,2,2,2,3,3,3,3]

In [61]: gkf = GroupKFold(n_splits=3)

In [62]: for train, test in gkf.split(X,y,groups=groups):
  ...:   print train, test
  ...:   
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

10.LeaveOneGroupOut

這個(gè)是在GroupKFold 上的基礎(chǔ)上混亂度又減小了,按照給定的分組方式將測(cè)試集分割下來(lái)。

In [63]: from sklearn.model_selection import LeaveOneGroupOut

In [64]: X = [1, 5, 10, 50, 60, 70, 80]

In [65]: y = [0, 1, 1, 2, 2, 2, 2]

In [66]: groups = [1, 1, 2, 2, 3, 3, 3]

In [67]: logo = LeaveOneGroupOut()

In [68]: for train, test in logo.split(X, y, groups=groups):
  ...:   print train, test
  ...:   
[2 3 4 5 6] [0 1]
[0 1 4 5 6] [2 3]
[0 1 2 3] [4 5 6]

11.LeavePGroupsOut

這個(gè)沒(méi)啥可說(shuō)的,跟上面那個(gè)一樣,只是一個(gè)是單組,一個(gè)是多組

from sklearn.model_selection import LeavePGroupsOut

X = np.arange(6)

y = [1, 1, 1, 2, 2, 2]

groups = [1, 1, 2, 2, 3, 3]

lpgo = LeavePGroupsOut(n_groups=2)

for train, test in lpgo.split(X, y, groups=groups):
  print train, test
  
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

12.GroupShuffleSplit

這個(gè)是有放回抽樣

In [75]: from sklearn.model_selection import GroupShuffleSplit

In [76]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, .001]

In [77]: y = ['a', 'b','b', 'b', 'c','c', 'c', 'a']

In [78]: groups = [1,1,2,2,3,3,4,4]

In [79]: gss = GroupShuffleSplit(n_splits=4, test_size=.5, random_state=0)

In [80]: for train, test in gss.split(X, y, groups=groups):
  ...:   print train, test
  ...:   
[0 1 2 3] [4 5 6 7]
[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]

13.TimeSeriesSplit

針對(duì)時(shí)間序列的處理,防止未來(lái)數(shù)據(jù)的使用,分割時(shí)是將數(shù)據(jù)進(jìn)行從前到后切割(這個(gè)說(shuō)法其實(shí)不太恰當(dāng),因?yàn)榍懈钍茄永m(xù)性的。。)

In [81]: from sklearn.model_selection import TimeSeriesSplit

In [82]: X = np.array([[1,2],[3,4],[1,2],[3,4],[1,2],[3,4]])

In [83]: tscv = TimeSeriesSplit(n_splits=3)

In [84]: for train, test in tscv.split(X):
  ...:   print train, test
  ...:   
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]

這個(gè)repo 用來(lái)記錄一些python技巧、書(shū)籍、學(xué)習(xí)鏈接等,歡迎star github地址

您可能感興趣的文章:
  • sklearn和keras的數(shù)據(jù)切分與交叉驗(yàn)證的實(shí)例詳解
  • 使用sklearn的cross_val_score進(jìn)行交叉驗(yàn)證實(shí)例
  • Python sklearn KFold 生成交叉驗(yàn)證數(shù)據(jù)集的方法

標(biāo)簽:崇左 濟(jì)南 安康 喀什 長(zhǎng)沙 山西 山西 海南

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《sklearn中的交叉驗(yàn)證的實(shí)現(xiàn)(Cross-Validation)》,本文關(guān)鍵詞  ;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 收縮
    • 微信客服
    • 微信二維碼
    • 電話咨詢

    • 400-1100-266
    洱源县| 哈巴河县| 丽江市| 德州市| 南郑县| 平泉县| 太谷县| 仁布县| 阳谷县| 和林格尔县| 屯留县| 杂多县| 奇台县| 玉林市| 乐清市| 云林县| 册亨县| 讷河市| 镇远县| 宁夏| 方正县| 大邑县| 卓尼县| 砀山县| 荥经县| 盱眙县| 吴川市| 松溪县| 德阳市| 府谷县| 桐柏县| 平塘县| 修文县| 宾阳县| 东城区| 河南省| 柳河县| 海门市| 新建县| 汤原县| 娄底市|